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J .  Phys. A: Math. Gen. 21 (1988) L339-L344. Printed in the U K  

LETTER TO THE EDITOR 

Crossover in the one-dimensional self-directed walk 

Loic Turban and Jean-Marc Debierre 
Laboratoire de Physique du Solide, Universite de Nancy 1, BP 239, F54506 Vandoeuvre 
les Nancy, Francet 

Received 27 November 1987 

Abstract. The self-directed walk is studied in one dimension. In this walk with memory 
the jump probability is given by WN*(i) = [ I  +exp(*gAN(i))]-' where A, is the difference 
between the number of times the sites in the forward and backward directions have been 
visited after N steps. When g > 0 there is a crossover between a Gaussian random walk 
and an intermediate regime where the radius of gyration grows like N 2  followed by a 
crossover to the asymptotic regime where the walk is directed. When g < 0 a single crossover 
is obtained between the Gaussian random walk and a saturation regime at large N when 
the walk is self-attracting. 

The study of random walks with memory has been a field of great activity in recent 
years (see Lyklema (1986) and Peliti and Pietronero (1987) for reviews). This renewed 
interest originates in the work on the true self-avoiding walk (TSAW) which is a 
dynamical version of the old self-avoiding walk (SAW) problem (Amit et a1 1983, 
Pietronero 1983, Obukhov and Peliti 1983, Obukhov 1984, Rammal et a1 1984, Bernas- 
coni and Pietronero 1984, Stella et a1 1984, Ottinger 1985). 

Recently, we introduced and studied a new kind of growing random walk, the 
self-directed walk (SDW) in which the walker is allowed to jump with the same 
probability in any lattice direction where a path is open (Turban and Debierre 1987a, b). 
An open path is a lattice direction in which no site has been previously visited by the 
walker. A self-consistent Flory-like argument has been developed (Turban and 
Debierre 1987a) leading to the following values of the radius of gyration exponent: 

v = l  l s d s 2  

v = 2/d 2 s d s 4  (1) 

v = i  2 d 2 d, = 4. 

Our Monte Carlo results in two and three dimensions are in good agreement with the 
Flory predictions. Compared to the SAW ( v  = 3/(d +2); d,  = 4) and the TSAW ( U  = 
2/(d + 2); d, = 2) the SDW is more elongated below the upper critical dimension d, = 4 
at which it becomes Gaussian. It is directed, in the sense that the radius of gyration 
R N  grows like N at and below d = 2. 
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In one dimension with the rules given above the problem is trivial. In the present 
work they are modified in analogy with the TSAW (Amit et al 1983). The walker at r 
is allowed to jump in the forward (+) or backward (-) lattice direction (a) with a 
probability 

2d - I  

w y ) ( r )  = exp(-gNp'(r))  LI 1 [ e x p ( - g N ~ ) ( r ) ) + e x p ( - g N ~ ' ( r ) ) l )  ( 2 )  

where N',"'( r )  gives the number of times the sites in the corresponding direction have 
already been visited. The old rules are recovered in the limit g + +CO. Although the 
asymptotic behaviour is not changed, in one dimension when g > 0, one gets a suc- 
cession of two crossovers before the asymptotic directed regime is entered. Moreover 
this formulation allows the study of the regime g < 0 where the walk is self-attracting. 

In one dimension equation (2) may be written 

where n N ( j )  gives the occupation number of site j ,  i.e. the number of times site j has 
been visited by the walker after N steps. The walks are grown on a linear chain using 
a standard Monte Carlo method (Binder 1979). At each Monte Carlo step N, the 
end-to-end square radius ( x N  - x0)* and the number of distinct sites visited are stored. 
Averages X', = ((x, -x0)*) and S ,  are taken over lo4 walks of lo4 steps for the 10 
values of g studied (0.0001 < g < 1 and -0.01 < g < 0.0001). The mean site occupation 
number ( n N ( x ) )  after 1000 steps is shown in figure 1 for three values of g. When 
g = -0.001 one gets a sharp central peak as a result of the self-attraction whereas when 
g = 0.001 a tail begins to develop since the walk is directed at large N. 

The averaged end-to-end radius X N  is shown in figure 2 as a function of N with 
logarithmic scales. When g > 0 one gets first a Gaussian random walk (GRW) regime 
X N  - NI'* for small N and g, then a crossover to an intermediate regime where X N  
grows quickly with N like N 2  and finally a second crossover to the asymptotic regime 
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Figure 1. Mean occupation number ( n N ( x ) )  after N = 1000 steps for three values of g :  
(A) 0.001; (B) 0.0001; (C)  -0.001, 
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Figure 2. Variation of In X,v with In N for various values of g: (A) 1; ( B )  0.1; (C) 0.01; 
( D )  0.001; (E) 0.0001; (F) -0.0001; ( G )  -0.0003; (H) -0,001; ( I )  -0.003; ( J )  -0.01. The 
slopes give the radius of gyration exponent U in the different regimes. 

where the walk is directed X N  - N. When g < 0 the walk is self-trapping at large N 
and one gets a single crossover between the G R W  regime at small N and g and a 
saturation regime with X , ( g )  - ( - g ) - " '  when N + CO. X,(g) is obtained through an 
extrapolation of X',  against N - '  to N - '  = 0. A least-squares fit gives 2v' = 0.670 f 0.005. 
The same behaviour is obtained with SN as expected in one dimension where S ,  scales 
like X N  (figure 3) .  When g < 0, S,(g) - ( - g ) - '  with s' = 0.332 * 0.002. 

These results may be understood using a master equation approach, dimensional 
analysis and scaling arguments as in the TSAW (Obukhov 1984, Rammal et a1 1984, 
Bernasconi and Pietronero 1984). Let P N (  i )  be the probability for the walker to visit 
site i after N steps. P N (  i)  satisfies the master equation 

(4) P N + ,  ( i )  = P N  ( i - 1) WN+( i - 1) + PN ( i  + 1) WN-( i + 1). 
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Figure 3. Variation of In S, with In N for the g values indicated in figure 2. The slopes 
give the exponent s in S, - N '  in the different regimes. 
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In the weak-coupling regime ( g A N  < 1 )  equation (3) is 

WN*( i )  = f( 1 r $gL\,( i)) ( 5 )  

so that in the continuum approximation, keeping the leading contributions, one gets 

with 

In the GRW regime X2= ( x 2 ) -  N,  P -  N - ’ l 2  and A -  N (see the appendix) and 
equation ( 6 )  leads to 

1 / N -  1/X2+gN/X-(1/X2)(1+gN3/2). (8) 

It follows that the appropriate small parameter in a perturbation expansion is z =  
lgl  N3’2 .  The scaling ansatz for the mean square radius is then (see the appendix) 

x’, = N f ( z )  (9) 

with 

f( z )  = ag + a ,  z + . * * 

f ( z )  - zw  

z < l  

z >  1 .  

When g < O  and N + c o  in the saturation regime 

so that v’ = -tu = f in agreement with the numerical results. The scaling function f ( z )  
is shown in figure 4. GRW behaviour is obtained when I g 1 N 3 / 2  < 1 .  When g < 0 the 

Figure 4. Scaling function X$/ N =f( I g I N3’2)  showing the crossover between G R W  and 
intermediate regime when g > 0 and between G R W  and saturation regime when g < 0. The 
slopes give the exponent w defined in equation ( I O ) .  The g values are the same as in 
figure 2. 
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crossover is towards the saturation regime (f( z )  - z - * ’ ~ )  whereas when g > 0 one gets 
first an intermediate regime in the weak-coupling region ( g N  C 1) as long as equation 
( 5 )  remains valid. There the diffusion term in equation (8) may be neglected and 

X k  - g 2  N 4  (12) 

so that f(z) - z2. When g > 0 and g N  B 1 the asymptotic SDW regime is reached and 
X’, - N 2 .  The small parameter is then e-gN and the variable which is appropriate to 
describe the new crossover is t = g N  with the scaling ansatz 

X’, = N 2 h (  t )  

h ( t ) - ,  1 t+co  (13) 

h ( t ) - t 2  t C l  

according to equation (12). The numerical results support this assumption as shown 
in figure 5 .  The same scaling behaviour is obtained with f = S’,/ N and h ’ =  Sk/ N 2 .  

To conclude let us mention that we intend to complete the study of the SDW in 
two and three dimensions along the same lines. 

In g N  

FigureS. Scalingfunction X h /  N 2  = h ( g N )  showing thecrossover between the intermediate 
regime in the weak-coupling region and the SDW asymptotic regime for the positive g 
values given in figure 2. 

Appendix 

Let us assume that P is a generalised homogeneous function of x, N and g transforming 
under a change of the length scale by a factor b as 

(‘41) 

g ‘  = b-”xg. (A2) 

P ‘ =  P ( x ’ ,  N ’ ,  g ’ )  = b”rP(x, N,  g )  

where 

x’= b - ‘ x  N ’  = 6% N 
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From the normalisation condition on P and P’ one easily deduces 

y, = 1 .  (A3) 

Since P = an/aN, n(x, N,  g )  transforms as 

’ n  n ’  = bl+” 

and since according to equation ( 7 )  n = -+aA/ax, A(x, N, g )  transforms as 

A ’ =  b”A. (‘45) 

When these results are used in equation ( 7 ) ,  in the weak-coupling regime, one obtains 

Since b is arbitrary, the exponents in front of the three terms must be the same so that 

y, = -2 y, = 3. (A71 

Equations ( A l ) ,  (A4) and (A5) with b = N”’ give 

P(x,  N, g) = N-”*P(xN-”*, 1, gN3”) 

n(x, N, g)  = N1’2n(~N-’’2, 1 ,  gN3’*) 

A(x, N,  g)  = NA(xN-’’2, 1, gN3’*) (A101 

whereas using equation (A8) 
+?3 

X’, = [ dxx*P(x ,  N, g )  
- X  

+Q 

= N dYY*P(Y, 1,  gN3’2)  

= Nf(gN3’2) 

in agreement with equation (9). 
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